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Fluids of Long Molecules 

We use the reference interaction site model (RISM) integral equation theory to 
study the percolation behavior of fluids composed of long molecules. We 
examine the roles of hard core size and of length-to-width ratio on the percolation 
threshold. The critical density Pc is a nonmonotonic function of these 
parameters exhibiting competition of different effects. Comparisons with Monte 
Carlo calculations of others are reasonably good. For critical exponents, the 
theory yields 7 = 2v = 2 for molecules of any noninfinite length L. When L is 
very large, the theory yields Pc ~ L 2. These predictions compare favorably with 
observations of the conductivity for random assemblies of conductive fibers. The 
threshold region where asymptotic scaling holds requires the correlation length 

~ (~p/p~.)-~ to be much larger than L. Evidently, the range of densities in this 
region diminishes as L increases, requiring that density deviations from Pc be no 
larger than 6p ~ L 2. Otherwise, crossover behavior will be observed. 

KEY WORDS: Percolation; RISM integral equation. 

1. I N T R O D U C T I O N  

M a n y  p h e n o m e n a  which occur  in d i so rdered  systems can be unde r s tood  in 
terms of the connect iv i ty  and  clustering of part icles.  Higher  densities 
increase the tendency of par t ic les  to cluster together.  At  the cri t ical  
pe rco la t ion  densi ty  Pc, which is in general  dependent  upon  t empera tu re  
and  microscopic  details,  a macroscop ic  cluster  appears ,  spanning  the entire 
system. This sharp  geometr ic  phase  t rans i t ion  is the pe rco la t ion  t rans i t ion  
(see, e.g., ref. 1). I t  is often accompan ied  by dras t ic  changes in the physical  
p roper t ies  of  the system. The  so l -ge l  t rans i t ion  and the i n s u l a t o r - c o n d u c t o r  

t rans i t ion  in compos i t e  mater ia l s  can be two such examples.  F o r  fluid 
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systems, the effects of anisotropy, intermolecular correlations, and density 
fluctuations seem best described by continuous percolation rather than by 
lattice models. In this paper we apply a version of the reference interaction 
site method (RISM) to examine the roles of molecular shape and excluded 
volume on the percolation transitions in fluids. 

The Ornstein-Zernike integral equation approach to continuum 
percolation 2 and its solution within the Percus-Yevick (s) approximation 
were introduced by Coniglio e t  al. (2) Chiew and Glandt (3) applied this 
method to calculate among other things the critical densities of permeable- 
sphere models. Chiew and Stell (4) improved upon this approximation with 
a type of generalized mean spherical approximation. (9) Stratt and 
co-workers (5) seem to have been the first to implement these types of 
integral equations with proper account for excluded volume, and they 
predicted trends that are in qualitative agreement with Monte Carlo 
calculations/1~ Lupkowski and Monson ~12) and Laria and Vericar TM 

extended this approach to treat fluids composed of nonspherical particles 
by employing the interaction site formalism of Chandler and co-workers 
(see refs 14 for reviews). Our work described herein rests upon the 
contributions of Lupkowski and Monson and of Laria and Vericat. 
Excluded-volume effects, which generally dominate the intermolecular 
structure of liquids, ~5) were not directly taken into account by these 
workers. Nor did they consider extremely long molecules. Others have 
considered percolation with very long molecules (see, e.g., refs. 16), but 
often employed approximations that can be improved upon with the RISM 
approach. The present paper will address both the effects of excluded 
volume and long molecular lengths. 

Further extensions to study the role of attractive particle-particle 
interactions or the presence of more than one species are clearly feasible. 
Such extension have been carried out, for example, by Xu and Stell (6) and 
by Chiew e t  al., (7) respectively, for spheres, but these apparent extensions 
are not the focus of this paper. 

The remainder of this paper is organized as follows. In Section 2 we 
review the pertinent interaction-site equations and specify the model we are 
using. The molecular size and shape dependence of Pc and the critical 
behavior near percolation determined from numerical solutions of RISM 
integral equations are examined in Section 3. The paper is concluded in 
Section 4 with a discussion containing analytical analysis and proposals for 
future work. An Appendix provides some details pertaining to our calcula- 
tions that are omitted from the main text. 

2 Refs. 2-7 are representative but not inclusive of the large literature in this area. 
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2. F O R M A L I S M  AND MODEL 

2.1. Correlation Functions 

The central object in our studies is the site-site connectedness 
function, h~(r,  r'), giving the probability density that site ~ of a molecule 
exists at r and site 7 of another molecule in the same cluster exists at r'. 
Two particles are in the same cluster if at least one site on one particle is 
directly connected to one site of the other, or if there exists a continuous 
path between them with direct connections forming the links in the path. 
The definition of "direct connectivity" utilizes the concept of physical 
clusters (17) (see below). 

For an isotropic fluid of uniform density p = (N/V), h~+ (r, r') = 
h + ( I r - r ' l ) ,  where 

p2h+(r) = ~ (6(rl  =~) ~(r~ ~) - r ) ) '  (2.1) 

Here, as usual, rl ~) denotes the position of site ~ in molecule i. The prime 
on the average indicates that in the ensemble, molecules i and j belong to 
the same physical cluster. 

The mean cluster size S, which is one measure of the proximity to 
percolation, is given by 

S =  1 + p  f dr h+(r) 

= 1 +phi(O) (2.2) 

where /~+(k) denotes the spatial Fourier transform of h+(r). As k ~ 0 ,  
/z~+ (k) is independent of the site labels, ~ and 7. This invariance is due to 
the constraint of stochiometry. 

Another measure of the percolation threshold is the correlation length 
{~ defined as 

~=fdrh+(r)r2/fz=,(O) 

= lim { [ - 3//t + (k)] d2h + (k)/dk 2 } (2.3) 
k ~ 0  

As the percolation transition is approached, S and ~ diverge. In that 
limit, ~.~ becomes independent of the site labels ~ and 7, i.e., ~ - ,  ~. 

The divergences of S and r can be characterized by critical exponents 
3; and v: 

S,-, (Pc - P) ~ (2.4) 
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and 

~ ( P c -  P) -~ (2.5) 

In principle, for rigid molecules, the quantities Pc, 7, and v could also be 
computed from h + (r, f~l, ~2), the orientation-dependent pair connectedness 
function. This correlation function may be useful for expressing formal 
results, but for calculations, we do not know how to make accurate estimates 
with it. In contrast, the interaction site formalism (14) is not limited to rigid 
molecular species, and it provides a computationally convenient route from 
which the site-site correlation functions can be accurately estimated. 

2.2. M o d e l  and Connec t iv i ty  

To analyze connectivity, one may follow HilP 171 in separating the 
Mayer cluster functions into bonding parts plus remainders. Specifically, let 
f~.i(r) denote the site site Mayer cluster function. Then 

+ 
f~y(r) =fay(r )  +fay(r) (2.6) 

where f~+ (r) is the bonding portion. This bonding cluster function is short 
ranged, being nonzero only where two sites are directly connected. The 
simplest form is the one we adopt herein, 

f + ( r )  = +1, ~ < r < d  

=0,  r>~d, r < a  (2.7) 

Further, we consider herein only the simplest class of models for a 
molecular fluid, the one in which the site-site interactions are hard cores, 

fay(r)= -1 ,  r < a  

=0,  r~>cr (2.8) 

The M sites of a molecule are fused rigidly and equally spaced on a line of 
length 

L = ( M -  1 ) I (2.9) 

as illustrated in Fig. 1. 
The intramolecular 

expansions involving intramolecular distributions such as 

s~(r) = (1 - 6~) (6(r - r] ~)-  r~ '~) ) 

bonding leads one to consider diagrammatic 

(2.10) 
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(a) 
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(b) 

Fig. 1. (a) Sample molecule showing the meaning of the lengths L, l, ~r, and d. (b) Molecules 
1, 2, 3, and 4 all belong to the same cluster. Molecule 5 is not connected to any of the above. 

as well as the intermolecular f-functions. (~s) Connectivity in a physical 
cluster is then defined in terms of paths involving intermolecular f ~ - b o n d s  
and intramolecular s-bonds. Lupkowski and Monson (12) were the first to 
describe the interaction site cluster series (itself arising from a different sort 
of physical cluster analysis (~9)) in this context. 

2.3. RISM Equations 

Useful approximations in the interaction site formalism are usually 
based on the Ornstein-Zernike-like equation 

h(r) = co * e * r �9 e * h(r) (2.11) 

introduced by Chandler and Andersen (2~ and often called the RISM 
equation. Here, h(r) refers to the M x M matrix of site-site pair correlation 
functions h~, co(r) refers to the intramolecular correlation functions, 

e)~(r) = 6~, 6(r) + s=y(r) (2.12) 

and e(r) is the matrix of the site-site direct correlation functions, %(r) .  
The set of these latter auxiliary functions is defined by the Chandler- 
Andersen equation, (2.11 ). 
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Closures to Eq. (2.11) must provide a second independent connection 
between h(r) and e(r). The venerable Percus-Yevick closure, (s) adapted in 
this context, yields 

c~7(r ) = f~( r )  y~7(r) (2.13) 

where y~( r )  is the "indirect" correlation function, 

y~(r)= [l +h~,(r)]/[l+L,(r)] (2.14) 

Equations (2.13) and (2.11) applied to simple hard-core molecules yield 

h~(r)  = - 1 ,  r<cr  

c~7(r) =0,  r > a  
(2.15) 

which is an often employed closure in the RISM theory. (14) We use it 
herein, too. 

The interaction site diagrams summed by solving Eqs. (2.11) with 
(2.13) have been identified by Chandler. (21) As one possible approximation, 
Lupkowski and Monson (~2) suggested the partitioning of Chandler's series 
into connected and disconnected parts. For the case of hard-core molecules, 
Eq. (2.8), with the bonding function (2.7), the partitioning leads to the 
following RISM integral equations describing the connectivity functions: 

h + ( r ) = ~ ,  c + �9 ~ ( r ) + p r  c + �9 h+(r) (2.16) 

with 

h+(r)=O,  r < a  

= h~(r)  + 1, a < r < d (2.17) 

and 

+ c~y(r) =0,  r > d  (2.18) 

These are the equations we have solved and report upon in this paper. 
When the molecules are reduced to a single site, or when all the sites 

become concentric (i.e., L = 0 ) ,  this theory becomes identical to the 
Percus-Yevick-like theory of percolation put forth and solved analytically 
by Stratt and co-workers. (5) When both L and ~ = 0, the theory coincides 
with that of Chiew and Glandt. (3) For nonzero L, Eqs. (2.16)-(2.18) 
pertain to a model with two additional lengths: a, the hard-core diameter; 
and d, the connectivity diameter. Laria and Vericat employ RISM equations 
much like (2.16)-(2.18), but with a strength parameter ~ in place of a 
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length a. See Eq. (3.10) of ref. 13. It may be that their characterization is 
more appropriate than ours for soft colloidal suspension or micellar 
systems. But also their characterization may lack a systematic justification. 
Thus, we prefer the more straightforward modeling of excluded volume 
depicted in Eqs. (2.17) and (2.18). 

2.4. V a r i a t i o n a l  So lu t ions  and Perco la t ion  

Our numerical work is facilitated by exploiting the variational 
procedure for solving RISM equations. This approach to computing h~r(r) 
and c~(r) is well known. (22) We use it to solve Eqs. (2.11) with (2.15). 

The corresponding variational equations we use for the connectivity 
functions are 

where 

I + + 3 mSM/gC~(r)=O, r<d (2.19) 

( ,  
+ _ | + IRISM-- -- ~ dr c~7(r)[h~7(r)+ 1] 

d 
,%T 

_[(2~)3p2] 1 f dk {Tr p6(k) a+(k)]  

+ ln  det[1 -p&(k) ~:+(k)] } (2.20) 

One may quickly verify that Eqs. (2.19) and (2.20) are indeed equivalent to 
Eqs. (2.16) and (2.17). According to Eq. (2.18), we need to determine c+(r) 
only in the range r<d. Notice that according to Eq. (2.16), c+(r) can be 
discontinuous at r = a and r = d, but continuous elsewhere. There can also 
be cusps at other values of r. (18) For each region in between these points 
of discontinuity and discontinuous derivative, we represent each c+(r) as 
a polynomial in r. (Accounting for cusps is only of little importance in our 
numerical results, except for small L with large M.) The coefficients in 

+ these polynomials are then varied to minimize IR~SM" 
As the percolation threshold is approached, the equations become 

more and more difficult to solve. Laria and Vericat (~3/ have noted this 
problem, too. The source of this difficulty is the physical divergence of S, 
which in the RISM theory is given by 

S = l i m  [ 1  - p S ( k )  ~. + ( k ) ]  +'  (2.21) 
k ~ 0  

This formula follows from Eqs. (2.2) and (2.16). In view of Eqs. (2.21) and 
(2.20), we see that the connectivity equations are well defined only for 
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P ~< Pc. As we increase the molecular density p toward Pc, we must decrease 
the incremental change in p to avoid artificial divergences in the Newton- 

+ Raphson cycles used to minimize IR~SM. 

2.5. Reduced RISM Equations for Long Molecules 

For large aspect ratios L/d, the number of interaction sites M becomes 
large. Since the number of site-site correlation functions scales as M 2, the 
straightforward application of the RISM equations can become intractable. 
On the other hand, most of the sites in the middle of a very long molecule 
should be approximately equivalent. By exploiting this equivalency, when 
it holds, the number of coupled RISM equations can be greatly reduced. 
This observation has been used to good effect by Chandler and 
co-workers (23) to treat the Feynman "polymers" representing quantal 
electrons. It has been used by Schweizer and Curro I24) and others (e.g., 
ref. 25) to treat real polymeric systems with RISM. 

We have examined the possible equivalency in the direct connectedness 
functions calculated using the full set of topologically inequivalent sites. We 
find that for L / d >  10, the sites in the interior of the rodlike molecule are 
well approximated as equivalent, while the two sites at the edges of the 
linear molecule should be treated differently until the molecules are much 
longer. Quantitative measures of the equivalency of the interior sites are 
presented in the Appendix. With only the interior and end sites treated as 
distinct, the e + (r) matrix assumes the simple form 

( eL ( r ) ,  ~, 7=  1 or M 
t 

c+ (r)= ~ c+ (r), e = l  or M, l < 7 < M  (2.22) 
/ 

[,ci+(r), l < e ,  7 < m  

Similarly for h+(r), e(r), and h(r). As a result, Eq. (2.16) yields 

/~g(k) = { [ A & ( k ) ]  2 ~,,+ (k) + 2/;'(k) daee(k)}/4D(k ) 

/ ~  = { - [ A & ( k ) ]  2 ( f  (k) + 2~#(k) & e , ( k ) } / 2 ( M -  2) / ) (k )  

/~i, + (k) = { [,4,~(k)] 2 Og(k) + f ( k )  ~ , , ( k ) } / ( M -  2) 2 Z3(k) (2.23) 

where 

/}(k) = det[1 - pC~(k) t: + (k)] 

= 1 - pF,(k) 

= 1 -- pT(k)  + p2EAeS(k)]2 { [ ~ f  (k) ]  2 - ~',+ (k) O+(k)}  (2.24) 
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T(k) = Tr (b(k) e(k) 

= 2OSee(k) d+(k) + 4(be,(k ) d+ (k) + @i(k) Ei + (k) 

and 

with 

A&2(k) = 4(b,:e(k ) - 2(b~(k) (bee(k) 

(2.25) 

(2.26) 

M - - 1  

%(k)= Z 
a - - 2  

(bee(k) = [1 + &,i(k)]  (2.27) 
M 1 

,a,,(k)= y, 
:~,7 = 2 

Further, the variational functional, Eq. (2.20), is reduced with the aid of 
Eqs.(2.24) and (2.25). 

The reduced RISM equations for e(r) and h(r) are identical to the 
corresponding Eqs. (2.23) (2.27) for c+(r)  and h+(r). For large enough M, 
the inequivalency of the end groups can be ignored with negligible effect. 
In that case, only one set of equations remain relating c(r)= ci,(r) to 
h(r )  = hi i(r  ), and relating c+(r) = ci~ (r) to h+(r) = hi~ (r). For example, 
Eq. (2.11) then yields 

/~(k) = o52(k) e(k)/[1 -MpJa (k )  ~(k)] (2.28) 

where 

eS(k) = M - '  ~ &=~(k) (2.29) 

Equation (2.28) is the centerpiece of Schweizer and Curro's RISM theory 
of polymer melts (and blends, when the evident modification to mixtures is 
made). (24~ The corresponding connectivity equation is 

/~ + (k) = e32(k) ~ + (k)/[ ! - Mp(b(k) 6 + (k)] (2.30) 

3. RESULTS 

The calculations we describe now emphasize the role of molecular 
shape on the percolation threshold. A given length-to-width ratio can be 
mimicked with a variable number of interaction sites. We have checked 
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that in our theory the results presented here are not significantly altered by 
the use of auxiliary sites. For example, when L/d  = L/2a = 3, our calculations 
with either M = 6  or 12 are virtually indistinguishable. The Appendix 
provides some more information along these lines. In the captions for each 
of the following figures, we identify the specific number of sites employed 
to arrive at the illustrated results. 

The short-range behavior of h~(r)  is plotted in Fig. 2. The actual 
shape of h,~ (r) is very sensitive to the length of the molecule, the proximity 
of percolation as measured by 6p = Pc - P, and the hard-core size. Increasing 
the hard core dramatically reduces the probability that two sites are 
connected to one another on a short length scale. In contrast, the standard 
site-site correlation function h,(r)  is not very sensitive, as seen in Fig. 3. 
Notice, too, that unlike the case of flexible polymers, (24) the sites of a long 
rigid rod do not shield each other, and hii(r ) rises quickly from - 1  as r is 
increased from the hard core�9 One does notice, however, that hi~(r) 
decreases with increasing L. Due to the low density of the percolation 
threshold and the plurality of length scales, there is no oscillatory structure 
in either h, +(r) or hi~(r). This result is in contrast to the case of simple 
spheres.(5~ 

The percolation threshold volume fraction 

p * = p c V M ( d )  (3.1) 

is plotted as a function of aid for various aspect ratios in Fig. 4. Here 
vM(d) is the volume of the percolating shell of the M-site molecule. [-See 

1.0 

0.5 

0.0 
0 

!\. 

5 lO 

r/d 
Fig. 2. The  connect ivi ty  pair correlat ion funct ion h,'~(r) near  the percolat ion threshold:  
L/d= 1.5, M =  4, 6p/p, = 0 . 0 2  (dot ted line), and  6p/p,. =0.1  (do t -dashed  line); for L/d-12.5, 
M = 26, ~p/p, = 0.01 (solid line) and  ,Sp/p~ = 0.01, M =  26 (dashed  line), c~/d is 0.5 in the first 
three cases and  is 0.833 in the last one. 
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I 
00 ... .......... .~.~ ~ ~.~.- . . . . .  

,..~= ~ . 5  

-1.0 

o 5 lO 

r/d 

Fig. 3. The pair correlation function hii(r ) at the percolation threshold, p = Pc. From top to 
bottom: L/d= 1.5 (M = 4), 12.5 (M = 26), and 50 (M = 101 ). G/d= 0.5 in all cases. 

Eq. (3.1) of ref. 13.] For molecules with L/d<~ 1.5, our calculations predict 
reduced critical densities that reach a minimum at some intermediate value 
of a and then increases sharply when a approaches d. The L = 0 curve in 
that figure depicts the analytical results of Stratt and co-workers. (5) This is 
one limit of the RISM theory. At large aspect ratios, we predict that Pc* 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 
O. 

I I i l 

1 $ 

J " - - - r , - - . _ . r . _ , L . - - ' f  ..4~n 
/ 

1 I J I 

.2 .4 .6 .8 

Fig. 4. The reduced percolation density at different aspect ratios. From top to bottom the 
lines are for L/d= 0 (ref. 5), 1.5, 2.5, and 5. The number of sites varies and does not affect the 
result obtained as long as the geometry is kept constant (see Appendix). The circles are Monte 

Carlo results for cylinders with L/d= 5 (ref. 26). The squares and diamonds are Monte Carlo 
results for L/d= 0 from refs. 10 and 11, respectively. 
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becomes almost constant for a large range of hard-core sizes. We have 
more to say about this later. The integral equation predictions at aspect 
ratio 5 are in reasonably good agreement with Monte Carlo results (26) for 
spherocylinders of the same length. For spheres, L/d---O, the agreement 
with Monte Carlo (1~ is not as good, but it is still qualitatively 
reasonable. Lupowski and Monson (12) suggest that this approximate 
theoretical approach may improve in accuracy with increasing L/d; the 
comparisons in Fig. 4 may support their suggestion. 

The nonmonotonic behavior shown in Fig. 4 for small aspect ratios is 
the result of two opposing features. First, increasing ~ reduces the 
accessible volume of the outer percolating shell of the object, which in turn 
decreases the mean number of overlaps per molecule. Second, it increases 
the packing fraction of the fluid, thus forcing molecules together. The 
former tends to increase p~* and the latter decreases it. This competition 
makes p~* a nontrivial function of a. The packing effect becomes negligible 
in the limit of zero density. Since increasing the length of the molecule 
causes percolation to occur at lower densities, the fact that p* increases 
monotonically with a for long molecules is not inconsistent with this 
argument. 

Previous studies on the percolating behavior of long, totally permeable 
rods (16~ suggest that, for such objects, 

p* oc L 1, or equivalently, Pc .~M-2  (3.2) 

In Fig. 5 we examine this behavior at different hard-core sizes�9 Whereas 

CL 

�9 

- 0 . 5  

- 1 . 0  

- 1 . 5  

k I I I 

\ "'. "N 
N " .  ' \  

\ ". 
\ ' -  \ 

N " ' .  ' \  

\ ".. 

- 2 . 0  

I I I 

0,0 0.5 [ .0 1.5 

\ " .  
\ 

\ \ s  

E.O 

log (L/d) 

Fig. 5. p,* for different aspect ratios Lid at different hard-core sizes. From bottom to top: 
cr/d= 0, 0.500, 0.667, and 0.833. The number of sites is adjusted so that intersite distance is 
equal to d/2. 
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�9 -1 

-2 

J ,," / 

. "  / 

I 
-2 -1 

log  (SO/pc) 

Fig. 6. S-1/2 vs. @/Pc at ~/d= 0.667 at different aspect ratios. From top to bottom: L/d= 50 
(101 sites), 12.5 (26 sites), and 1.5 (4 sites). 

relation (3.2) seems true for totally permeable molecules starting at aspect 
ratio of around 5, it only begins to hold at larger aspect ratios as the 
hard-core size increases. 

The critical exponents 7 and v are examined in Figs. 6 and 7, respectively. 
The analytical solution of  the hard-sphere case (L = 0) (5) shows that for 

,.2 

sJ.P 

�9 

I I 

"\ 
"N 

'.. �9 "\ 

'.. N �9 
". \ � 9  \ 

". �9 �9 

\ , \  
"".. N "X "''"" ~ ~  

I 
-2 -I 0 

log  8p/pc 

Fig. 7. ~,,/L vs, 6p/p~. From top to bottom: L/d=l.5 (computed with M=4  sites), 12.5 
(26 sites), 12.5 (26 sites), and 50 (101 sites). ~/d= 0.667 except for the dashed line, for which 
c~ is zero. 
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\ e'.~ 1 \ . .  

> 

- 3  

I I I 

1 2 3 

log (L/o)  

Fig. 8. Comparison between the experimentally obtained critical volume fraction (circles) to 
achieve conductivity at several aspect ratios (from Ref. 1) and percolation thresholds 
calculated with the present theory. The theoretical lines are, from top to bottom, ~/d= 0.833, 
0.750, and 0.667. The number of sites used in the theoretical calculations is adjusted such that 
the intersite distance is less than 50% of ~ in order to minimize the concavity of the 
molecules. 

any ~ < d, 7 = 2 = 2v. Laria and Vericat (13) find ? = 2 analytically from the 
zero-pole approximation applied to permeable particles, ~ = 0, at specific 
values of L/d. One expects to find these exponents from the RISM theory 
for any finite values of L, or, and d, since for 6p small enough, the correlation 
length ~ is much larger than or, d, or L. Indeed, this expectation of universality 
is borne out in Figs. 6 and 7. Notice also, however, that the range of 
densities for crossover from the limiting critical threshold behavior 
becomes more extended as L increases. We can analyze this behavior 
analytically as developed in the next section. 

First, however, we turn to a limited comparison with experiment. 
These are conductivity studies (27) in which conductive fibers are randomly 
embedded in an insulating polymer. When the volume fraction of fibers is 
increased to a critical value, the dc conductivity experiences an increase of 
more than 10 orders of magnitude. In Fig. 8, we make a comparison between 
this critical volume fraction and the percolation threshold of "molecules" of 
the same aspect ratio. We use the connectivity diameter d as the only fitting 
parameter. More extensive experimental data of this type would be useful 
in testing this theory and analyzing the scaling for large L. 

4. D ISCUSSION 

Let us now consider the critical scaling for very long molecules. For 
large enough M, we can neglect end effects and utilize the reduced RISM 
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equations, the connectivity counterparts to Eqs. (2.28) and (2.29). The 
qualitative behavior of oh(k) is most significant. Figure 9 shows that for M 
large, the oh(k) for different molecules are all relatively similar. For k < 1/d, 
we can capture the essential features with 

where 

1 
~ ( k ) , . ~ ( M -  1) 1 + j ~ 2 k ~ +  1 (4.1) 

2 / d  ~ M (4.2) 

Equation (4.1) is correct for k < 1/d, the region of primary importance for 
critical phenomena. It also gives the correct k ~ ~ limit. 

The function d+(k) varies with k on a wavevector scale set by 1/d, 
whereas eS(k) varies most on the scale set by 1/Md. Hence, for qualitative 
purposes, (+(k) appearing in Eq. (2.30) can be replaced by 

6+(k )=c  o, k < k  c 

=0, k ~ k ~ .  (4.3) 

where the cutoff wave vector can be taken as k c ~ lid. In that case, the 
closure of the reduced RISM equation, Eq. (2.17), leads to 

1 (.~/a k2ch2(k) Co 
1 = ~ Jo dk 1 - Mpch(k)eo (4.4) 

. - - ' x  
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Fig. 9. The function oh(k) versus k in units of inverse intersite distance l: M = 5 (dotted line); 
M =  10 (solid line), eS(k) for M =  20, 30, 50, and 100 are indistinguishable in this region of 
k space on the scale of the graph. 
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To simplify the analysis with no significant effect on the end result, we have 
used on the left-hand side of Eq. (4.4) the constant associated with 
permeable percolating objects. In general, the left-hand side is a slowly 
varying density-dependent quantity. Equation (4.4) is to be solved for 
co(p), and the exponent 7 is determined from 

S = [1 - pM2co(p)]  - i  ~ (@)- , /  (4.5) 

Assuming co(o) is of order 1 and analytic near p = p~,, we can anticipate 
from Eq. (4.5) that pcd 3 ~  O ( M  -2)  and that the exponent 7 is a positive 
integer. Indeed, it is essentially with this argument that Bug et al. ~6) 
concluded pcvM oc M -1 and that 7=  1. We agree with the first of their 
conclusions, but not the second. 

By employing Eq. (4.1), one can perform the integral in Eq. (4.4) 
exactly, leading to a transcendental equation for co(p). The equation can be 
simplified through expansions ordered in M -~ and in (Pc-P)/P~.  = @/P~. 
Smallness of both these variables is required, of course, when invoking 
Eqs, (4.1)-(4.3). One finds from this analysis that 

1 1 
Pc = 6rcZd 3 M z [1 + O ( M - l ) ]  (4.6) 

Furthermore, if 

@/Pc <~ 1/M2 (4.7) 

then 

1 - p M 2 c o ( o ) =  (16/9~ 2) M2(6p/pc)  2 + .~. (4.8) 

where the omitted subsequent terms are smaller by factors of M -  ~ and/or 

(~P/Pc). 
According to Eq. (4.6), as the molecules become longer, the threshold 

density decreases as M -2. Furthermore, according to Eqs. (4.8) and (4.5), 
we have the critical exponent ~ = 2. It is a possible "classical" exponent, but 
not the value of unity proposed by Bug et al. (16) Notice, however, that the 
asymptotic sealing of S does not hold until 6pipe is extremely small, 
Eq. (4.7). The prediction of 7---2 should be compared with the best 
estimates of this exponent based upon Monte Carlo calculations~l'~-8): 
y ~ 1.7-1.8. 

It is perhaps worth stressing that our use of the terminology "classical 
exponent" refers to the assumption of analyticity near the critical density. 
We do not assume a low-order truncation of a virial or low-density 
expansion. Such an assumption, which yields 7 = 1, seems untenable in the 
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threshold region, where an infinite-order series is required to describe the 
percolating network. 

One final remark concerns the correlation length critical exponent v. It 
is clear from Eqs. (2.30) and (4.1) that the correlation function is analytic 
in k for small k. It follows that in this theory, ~ 2  S. As a result, 
v = ~/2 = t. 

In conclusion, therefore, the RISM approach to continuum percolation 
is a classical theory which makes reasonable estimates of scaling and 
threshold densities. But neither is quantitatively accurate. Improvements 
along the lines proposed by Stell (4/for simple systems might be worthy of 
examination. Even without further improvements, however, possible 
extensions can be pursued immediately with only slight generalizations of 
what we have discussed in this paper. These extensions include studies of 
directed percolation relevant to "living" polymers, scaling and crossover 
behavior for systems of flexible polymers, and percolation in ordered fluids 
such as liquid crystals. 

APPENDIX 

Predictions of a consistent theory should be invariant to the addition 
of auxiliary sites so long as the molecular geometry is relatively unchanged. 
We have tested our calculations to be sure the results reported in the main 
text satisfy this criterion of consistency. In Fig. 10 the inverse mean cluster 

t .o 

r~ 0.5 

0.0 
0.0 

I 

0.2 0.4 

9" 
Fig. 10. 1IS vs. p* at aspect ratio 1.5. Upper curves: a/d=0.833. Lower curves: aid=O.667. 
The values of 1/S calculated with different numbers of auxiliary sites (four, five, and six) are 
barely distinguishable on the scale of the graph, 

822/63/5-6-4 
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Fig. 11. p* at short aspect ratios. The solid lines are obtained by using three or more sites 
and the dotted lines with two sites. Upper  curves correspond to a/d= 0; lower curves are for 
~/d = 0.667. For example, the dashed line is calculated using four sites and differs slightly from 
the solid line, which is computed with three sites in that region. 
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Fig. 12. 1/S computed with and without the assumption of equivalent interior sites. Solid 
lines are computed by setting all sites except the two end ones to be identical. Dotted lines 
are computed with the full set of inequivalent sites. (a) a/d= O, and the three curves from top 
to bot tom refer to M = 6 ,  8, and 16. Intersite distances are kept at 0.667d in all cases. 
(b) a/d= 0.833, and M - 8 ,  12, and 16 from top to bottom. Intersite distances are kept at 
0.667d in the former two cases and 0.75d in the last one. 
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size is plotted against density. The phase diagram is unchanged whether 
one uses four, five, or  six sites to represent the molecule. For  short aspect 
ratios, such excellent agreement requires several more  sites per unit length, 
as can be seen in Fig. 1 1. M a n y  discontinuities in the basis functions are 
required for the very small-aspect-ratio calculations to ensure convergence. 
p* is relatively independent  of  whether two or  three sites per length d are 
used, except when the L i d  ratio is less than 1; for 1 / 6 < L i d < l ,  one 
requires at least three or four sites per length d to obtain results invariant 
to the number  of sites employed. Even more  sites are required for smaller 
lengths. For  L = 0 exactly, however, any number  of sites is equivalent to 
one site, as is easily demonst ra ted  formally from the RISM equations. 

In addit ion to testing invariance to auxiliary sites, we have examined 
the quantitative accuracy of the reduced RISM equations which treat 
interior sites as equivalent. The tests are illustrated in Fig. 12. The graphs 
indicate that for molecules with M > 6 or L/d>~ 5, the reduced description 
is quite accurate. 
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